If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9t^2-(16.42)t-11=0
We multiply parentheses
4.9t^2-16.42t-11=0
a = 4.9; b = -16.42; c = -11;
Δ = b2-4ac
Δ = -16.422-4·4.9·(-11)
Δ = 485.2164
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-16.42)-\sqrt{485.2164}}{2*4.9}=\frac{16.42-\sqrt{485.2164}}{9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-16.42)+\sqrt{485.2164}}{2*4.9}=\frac{16.42+\sqrt{485.2164}}{9.8} $
| 100–m=84 | | 100–m=84; | | -3=9-3/4x | | 4.9t^2-(16.42)t-12=0 | | 7y-6=-3y+4=7 | | 25=q+15 | | s-6=9 | | 5(2x-3)-(x+8)=4 | | -a-3=12 | | x+1=7x+12−11−6x | | 1/4x+-2=8 | | -13=n/9-14 | | 2×-7=5x+8 | | x^2-6x+9=60 | | 7^{4x-5}=3^{2x+1} | | 120p-4p^2=600 | | 44x+5-(3x+4)=270 | | 2=a/5-3 | | 900=(x-3)⋅(-100) | | ((2x+120)/3=5x-20 | | 2(3x+6)=3(x–10 | | 7(7+3)=6(6+x) | | 2(y-1)+3(y-2)=4(y-3) | | 32–2x=20 | | x/3+0.5xx=6 | | 5x1=x+15 | | 0.10d+0.05(d+9)=2.25 | | 98-w=190 | | 51=x+15 | | 2(5)+y=10-3y | | 3(x-3)=72÷12 | | 7(x+3)+6x=86 |